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ABSTRACT

This paper describesNY U’s effort toward improving recognition ac-
curacy for the 1996 ARPA Large Vocabulary Continuous Speech
Recognition evaluation. We are trying to develop different kinds of
language models including longer-range models and alinguistically
motivated model. For the system described here, we used as a start-
ing point the scores produced by SRI’s acoustic and language mod-
els. These are linearly combined with the scores produced by the
NY U language models. This paper also describes some experiments
we tried which were not used in the official experiment, including
experiments with perplexity minimization, Maximum Entropy mod-
eling and parsing.

1. Introduction

This paper describesNY U’s effort toward improving recognition ac-
curacy for the 1996 ARPA Large Vocabulary Continuous Speech
Recognition evaluation. Our goal has been to study some longer-
range language models and determine whether they can be a useful
component of the language models used for speech recognition. We
will explain the model we used for the official evaluation, donein
collaboration with SRI. (SRI's systemis described in [1]) The tech-
nique used for the official evaluation is essentially the same as last
year's model. We used a topic coherence model, cache model and
weighted cache model.

This paper also describes some experimentswe tried which were not
usedin the official experiment, including experiments with perplex-
ity minimization, Maximum Entropy modeling and parsing.

2. Topic coherence model
- official evaluation -

We worked jointly with SRI thisyear. For the system described here
for the official evaluation, we used as a starting point the scores pro-
duced by SRI’s acoustic and language models. These are linearly
combined with the scores produced by the NY U language models,
and then the hypothesiswith the highest total scoreis selected

2.1. Sublanguage model

Our approach can be briefly summarized as follows. The topic or
subject matter of an article influencesits linguistic properties, such
asword choice and co-occurrence patterns; in effect it givesrisetoa
very specialized “ sublanguage’ for that topic. Wetry to find the sub-
languageto which the article belongs based on the sentences already
recognized. At astagein transcription-mode speech recognition pro-
cessing, somewordsin the other utterancesare selected askeywords.
Then, based on these keywords, similar articles are retrieved from a
large corpus by a method similar to information retrieval. The re-

trieved articles are assembled into a sublanguage “ mini-corpus’ for
thecurrent article. Wethen analyzethe mini-corpusin order to deter-
mine word preferenceswhich will be used in analyzing the sentence
currently being processed. The details of each step were described
in last year's paper [6], although some minor parameters were set to
different valuesto fit this year's evaluation.

2.2. Weighted cache model

We combined this sublanguage model with a cache model and a
weighted cache model. Our “traditional” cache model [which is the
same as the model we used last year] assigns a score to every word
based on the log of the ratio between the unigram frequency of the
word in the current document and the unigram frequency of theword
in the corpus asawhole:

Fllw) = Nu_mber of occurrences of w in current 1
article

NC= T Flw) @
wearticle

F(w) = Number of occurrencesof w in corpus (3)

M = Z F(w) (4
weCOrpus

_ F'(w)/N'
CScore(w) = log ( Fw)/M ) (5)

The purpose of the denominator in thisformulais to compensatefor
the fact that high-frequency words are more likely to appear in the
cache than low-frequency words. For instance, the occurrence of a
high-frequency word like“ Clinton” suppliesmuchlessnew informa-
tion to the language model than does the appearance of arelatively
low-frequency word such as*“ Schwarzenegger”.

Although our experiments have shown that C'Score(w) is useful, it
doesn’t make use of the fact that some words tend to be highly con-
centratedin afew articleswhereasother wordsarelikely to be spread
fairly evenly over the corpus. Consider the following two medium-
frequency words:

Word F(’LU) DFl(’LU) DF2+(’LU) FE1 (’LU) E2+ (’LU)
second | 51707 | 24273 9775 0.5187 | 0.8065
japan | 50066 8103 8076 2.0945 | 3.1960
Definitions:
DF;(w) = Number of docscontaining w j times
DF;1(w) = Number of docscontaining w j timesor more
Er(w) = _B(w) 1

DF4(w)



F(w) — DFy(w)
Barlw) = DF>y(w) :

Thetwo quantities which we used for our weighted cache prediction
were £ (w) and E24 (w)-the expected number of reoccurrences of
w given one appearance of w in the document and given 2+ appear-
ances. These quantities are similar to those described in [10]. Note
that we are using the same formula for 2+ appearancesof w asfor 2
appearances. We did this dueto anintuition that further appearances
probably contained no new information and also for simplicity of im-
plementation.

It can be easily seen from the table that these quantities seem to
model real phenomena because their values for “japan” are much
higher than for “second” even though the two have about the same
unigram frequency. This matches our intuition that “japan” is much
more likely to be the topic of an article than is“second”.

We combined these quantities together using the following formula:

F'(w)y=0 : 0
Ew) = { F'(wy=1 : Fi(w)
Fllw)>2 : Eap(w)
DocTot = Z E(w)
w:wearticle
WCScore(w) = log (%)

In combining these three knowledge sources (sublanguage, cache,
and weighted cache), we found from experiments on minimizing the
error rate of the devtest data that we achieved our best results by us-
ing all three sources (see Figure 1).

| | Word Errors | Improvement |

SRI (baseline) 7273
SRI + SL 7180 -93
SRI + cache 7173 -100
SRI + SL, cache 7126 -147
SRI + SL, w-cache 7136 -137
SRI + SL, cache, w-cache 7114 -159
| SRI +SL, cacheviaM.E. | 7224 | -49 |

Table 1: Devtest Results

2.3. Result

The absolute improvement using the sublanguage component over
SRI's system is 0.3%, from 33.3% to 33.0%, as shown in Table 1.
The absolute improvement is small; however, there is alimit to the
improvement we can obtain, because the N-best sentencesdon’t al-
ways contain the correct candidate. It is important to see the dif-
ference between the number of errors produced by the base system
and the minimum number of errors obtainable by choosing the N-
best hypothesiswith minimum error for each sentence. (We will call
the latter error rate “MNE” for “minimal N-best errors’.) Although
we don't have the precise number for MNE for the 1996 evaluation,
based on our estimatefrom dev data, we can suggest that our achieve-
ment is about 5% of the MNE (possible improvement). We believe
that the result is satisfactory, because there are a lot of word errors

System SRI SRI+NYU
FO 26.4% 26.0%
F1 33.0% 32.5%
F2 31.7% 32.6%
F3 34.7% 34.2%
F4 38.5% 38.4%
F5 34.4% 31.1%
FX 48.3% 48.1%
FO 33.3% 33.0%

Figure 1: Formal Result

unrelated to the article topic, for examplefunction word replacement
(“a” replaced by “the”), or deletion or insertion of topic unrelated
words (missing “over”).

2.4. Comparison to prior results

We have been working on topic coherence models for three years.
Theimprovement wemade eachyearisrelatively small, e.g. 0.3%to
0.6% in absoluteword error rate. However, it's important to observe
that we did obtain consistent improvements with this technique; this
increases our confidencein the significance of our result.

Furthermore, the improvements were achieved with different cor-
pora(WSJ, NAB,and BN) and different speech systems (BBN, SRI),
as shown in Figure 2. Thisis also encouraging, because it demon-
strates that the sublanguage technique indeed can work in such dif-
ferent environments.

Test (Partner) baseline | NYU | Absolute | Relative

result | Improve. | Improve.
96 BN (SRI) 333 33.0 0.3 (5%)
95 NAB-PO (SRI) 24.6 240 0.6 10.4%
95 NAB-CO (SRI) 9.7 9.4 0.3 5.6%
94 WSJ (BBN) 11.0 10.6 04 -

Figure 2: Results (History)

2.5. Related wor k

There have been several related efforts in the ARPA speech commu-
nity. Table 2 showssome of the recent work which usestopic coher-
ent techniques, including cache model and topic clustering methods.
Because the evaluations were made on different test sets and condi-
tions, a direct comparison is not possible. We haveto be very care-
ful about the conclusionswe draw from the table. In general, we can
find improvements using these techniques, although many are rela-
tively small (except for the CMU experiment (94), which uses only
long texts and different conditions). We summarize the techniques
in three categories:

¢ Cache
Usepreviously uttered word information to supplement the lan-
guagemodel. Theweighted cache model also usesinformation
about the differing likelihoods of wordsto reoccurin anarticle.



[ Stte(Year) ||  Description | Result | Ref. ]
IBM (91) cache model [2]
CMU (94) trigger model 19.9—- >17.8 [3]
BU (93-94) clustering 11.3—>11.2 [4]

(4 topic LM)

NYU (94-96) || sublanguage, cache 11.0- >10.6 [5]
and weighted 24.6— >24.0 [6]
cache model 33.3— >33.0

CMU (96) hand clustering 0.1,0.6% improve. | [7]
(5883 topic) in 2 story

SRI (96) clustering 33.1- >33.0 [8]
(4 topic LM)

CU (96) cache model 27.7— >2715 [9]

Table 2: Related works

In transcription mode, the information in the following input
can also be used.

e Dynamic Topic Adaptation (trigger, sublanguage)
Dynamically consult a database to build a language model for
thetopic. Thedatacan be structured in advance (trigger model)
or the raw text data can be retrieved and analyzed on demand
(sublanguage model), but in either case the set of topicsis not
defined in advance.

¢ Clustering Language Model
Prepare language models for several topics which are defined
in advance (automatically or by hand). Then find the topic of
the current segment and use the language model of the topic (or
possibly amix of several language models, also combined with
the general language model).

3. Perplexity Minimization
We combine our components among themselves and relative to the
SRI acousticand n-gram componentsby usingasimplelinear combi-
nation of thelog of the scoresor probabilities produced by each com-
ponent. Theserelative weights are determined by minimizing the er-
ror rate of devtest data. We were concerned, though, that the devtest
datamight betoo small for this sort of training and that the problem
would be exacerbated as we added additional linguistic components.

To get around this problem, we reformulated our cache and sub-
language modelsto produce probabilities rather than scores and ran
some preliminary perplexity minimization experiments on a single
day of WSJ data, which represented a 73,000 word corpus vs the
8,000wordswhichwehadinthe’ 95 devtest data. Theseexperiments
showed that the interpolation of cacheand sublanguage probabilities
with the baseline trigram probabilities caused a big decreasein per-
plexity, but we got no improvement in error rate when the weights
which minimized perplexity were used on the devtest data.

Surprised by this result, we reran our perplexity experiments on the
devtest text data and got perplexity and word error figures for over
200 different relative weightings of trigram, cache, and sublanguage
values. A representative slice of this three-dimensional grid can be
seen in Figure 3, which shows perplexity and word error rates for
various weightings of the sublanguage/cache component relative to
a standard backoff trigram component [16]. Note that in the chart
the sublanguage/cacheratio is fixed at 4:6 and that the point “0.00”

represents a purely trigram model. As the figure shows, a big de-

| weight for SL/cache | perplexity | Word Errors ]

0.00 151.9 720
0.03 131.2 716
0.06 128.4 715
0.09 127.8 719
0.12 128.2 721
0.15 129.3 724
0.18 130.9 727

Table 3: Perplexity and Error Rates

creasein perplexity might correspondto aminimal decreasein error
rate (the 0.06 weighting) or an increase in errors (the 0.12 weight-
ing). Furthermore, the perplexity minimum was fairly flat across a
broad range, offering little guidance on the optimal relative values.
We concluded from this experiment that perplexity is not necessarily
agood guide to minimizing word error rate.

The reader may have noticed that the results achieved by the prob-
abilistic approach were significantly worse than those produced by
the original “ scoring-based” model. Thisis probably dueto various
features which were left out of the experimental probability-based
model. For instance, the scoring-based model used the entire remain-
der of the document as context for determining a sentence’s cache
and sublanguagescoreswhereasthe probabilistic model just usedthe
preceding sentencesin the document. It also seemed possiblethat the
scoring-based formulae might be working better than the probabilis-
tic formulae. Another possible explanation is that seeking to opti-
mizetheerror rate by searchingfor alinear combination of log proba-
bilities (or scores) may be better than doing the samewith acombina-
tion of “unlogged” probabilities, aswedidin the probabilistic model.
We mention these differences just to point out that the probabilistic
model cannot be directly compared with the scoring model. Since
our results indicated that our probabilistic approach was not helpful,
we ended up using the scoring-based model in the evaluation.

4. Maximum Entropy Experiments

Maximum entropy modeling (M.E.) offers some of the same benefits
of the perplexity minimization method in that it allows usto train on
largetext corporarather than on the smaller amount of n-best datafor
which we have acoustic data available. More importantly, though,
M.E. gives us a new way of constructing these models and of com-
bining them in a non-linear fashion.

Consider, for instance, the cache scoring formula of equation 5. This
formula was developed according to our intuition of the nature of
cache word repetition, but it is vulnerable to criticism on other in-
tuitive grounds. For instance, doesit make sensethat the (unlogged)
score for aword should double when aword has been seen twice as
many times in an article? Furthermore, our team has had continu-
ing internal debatesabout how to handletheinteraction of the cache
and sublanguage models: i.e. should the sublanguage model predict
cachewords or should it leave the prediction of those words entirely
to the cache component?

M.E. theory [13] [14] offers an intuitively and theoretically satisfy-
ing answer to these sorts of questions which vex language model-
ers. When using M.E. for language modeling, one identifies a set of



linguistically significant “constraints” and atraining corpusand then
the M.E. algorithm builds amodel which is guaranteed to:

e Conformto all of the constraints (assuming they are consistent
with each other)

¢ Havethe maximum entropy (i.e. bethe“flattest”) of all models
which conform to these constraints

e Maximize the probability of the training corpus, subject to the
constraints (thisisonly true under certain conditions, which we
adhered to in these experiments)

For our experiments, we used a set of constraints which closely mir-
rored the phenomenawe were trying to capturein our previouscache
and sublanguage modeling experiments:

Cacher = P (w|wseenk timesin article)
grdf  — P( v occurredin k of the 50 similar articles)
LA “lretrieved by the sublanguage module
we k occurrences of w in the 50 similar ar-
SLy = W
ticles

TheM.E. algorithmwill build amodel in which the conditional prob-
abilities of these featureswill conform, on average, with thosefound
in the training corpus. This can be expressed more precisely in the
following way, usingthe featurefamily C'ache;, asanexample. First
define an indicator function which isafunction of the document his-
tory h and the current word w:

if k& instances of w have appearedin the

Ci(h,w) = 1 current article prior to the current in-
' stance of w
0 : otherwise

Now we observein the training corpus that

> P(h,w)Cr(h, w) = o

(h,w)

We then constrain our M.E. language model to only consider condi-
tional models, P(w|h), which conform to this constraint:

> P(h)P(w|h)Cr(h, w) = ay,

(h,w)

One departure of this work from that of other work in the field [14]
is that we build a very small, and hence computationally tractable
model, using only c. 200 constraints/parameters. Rosenfeld, by con-
trast, built amodel which had c. 2.2 million parameters. The primary
reason for the difference is that we are leaving n-gram constraints
out of the model, whereas Rosenfeld incorporated theminto his. We
think that we may be paying a penalty in performance by doing this,
but we hopethat we will neverthel esssqueezesignificant benefitsout
of the model while avoiding the very heavy computational require-
ments which Rosenfeld reported—roughly two weeks machine time
on 15 DEC/Alpha workstations.

Our preliminary results with these experiments were
that we achieved only 31% of the gain which we achieved by using
the conventional methods (see Figure 1). While these results might
seem to be discouraging, we believe that they are due, in part, to the
fact that we have not yet had sufficient time to experiment with the
techniques.

Since we implemented this using a publicly available M.E. toolkit
[15] which permits basically any knowledge source to be used asin-
put so long as it can be parameterized along the lines shown above,
wethink that we may have the ability to integrate a large number of
different linguistic sourcesinto a single, unified model. Among the
sourceswhich we are thinking of integrating are:

¢ An M.E. formulation of our weighted cache component

e Some formulation of unigram, bigram, and trigram features
which avoids amassive explosion in the number of parameters

e A parsing score as derived from the Apple Pie Parser (see next
section)

¢ Miscellaneouslinguistic features which would allow usto ex-
periment with the effect of integrating alarge number of diverse
knowledge sources.

5. Parsing

As part of our effort to apply natural language techniquesin order to
improverecognition accuracy, we are devel oping acorpus-based sta-
tistical parser [11]. It is a probabilistic, bottom-up, best-first search
chart parser, and its grammar is acquired from syntactically brack-
eted corpus. The special feature of the parser is that the number of
non-terminalsis relatively small (5 in the current version) in order to
capture larger context. This parser is publically available[12].

Recently, we implemented a technique to incorporate the probabili-
ties of lexical dependenciesinto the parser. We created a simple set
of rulesto identify the head of each constituent, and assigned depen-
dency relationshipsbetweenthe head and all the other elements. This
relationship is actually along distance, syntactically motivated bi-
gram (for example, between a verb and the head of its subject). In
some cases, this dependency bigram can work better than the usual
bigram, becausetherelationshipis syntactically meaningful, and not
just between consecutive words. However, the only currently avail-
able large syntactically tagged corpusis the University of Pennsyl-
vaniaTree Bank; we used the Wall Street Journal portion of the Tree
Bank to acquirethelexical dependency probabilities. Oneof the seri-
ous and unavoidable problemsisthe limited size of the training cor-
pus. Compared to the corpus size typically used for bigram train-
ing, thetraining size for the dependency relationshipsis significantly
smaller. Oneideafor tackling this problemin the future isto usethe
parser in order to create arelatively reliable tagged corpus. We have
found that the approach using the dependency rel ationships produces
good performance for analyzing written text. The typical accuracy
measurement (recall and precision of bracketing) improvesabout 2%
compared to the parsing result without dependency relationships.

Becausethe domain of thetraining corpusis businessnewspaper arti-
cles, wedecidedthat we would initially try the parsing schemeonthe
1995 speech evaluation data from North American Business News
domain rather than the 1996 (Broadcast News domain) evaluation.

5.1. Binary Comparison

First, in order to assessthe ability of the parsing techniquein speech
recognition, we ran a ‘binary comparison’ experiment. From the N-
best sentences, the best candidate based on SRI’s acoustic and lan-
guage model scores (which we will call * SRI-best’), and the correct
sentence(‘ correct’) are extracted. Both of the sentencesfor each ut-
teranceare parsed and the scoresare compared. Thedifference of the



parsing score is compared with the difference of the trigram score
(Table 4). In the table, only those sentences where the correct sen-
tenceisin SRI 's N-best and the correct sentence is not SRI's best
sentence are reported. Our hope is that the parser will consistently
prefer the correct sentence over SRI's best, and indeed we observed
that in 60% of the cases the correct sentence had the better parsing
score. Furthermore, we note that this subset of the eval data repre-
sents sentences on which the traditional (trigram) language model
did not do sowell; it preferred the correct sentencein fewer than 40%
of the cases.

trigram favors | trigram favors
correct sent. SRI-best
Parser favors correct 16 23
Parser favors SRI-best 9 17

Table 4: Comparison between parser and trigram

In addition, we examined some of the individual sentence pairs
(some of which are listed in the Appendix). In the remainder
of this section, we will indicate the category of the result by us-
ing the position in the table (i.e. top-right or bottom-left) In the
bottom-left category — examples which are not good for the pars-
ing model — we found some bugs in the grammar, as well as
some inevitable cases. where local evidence is as important as,
or more important than, wide syntactic context. For example, in
the third pair of sentences in Appendix, the parser prefers t he
parent conpany sharehol ders ratherthant he parent

conpany’ s shar ehol der s. Thisisbecausethe part-of-speech
sequence DT NN NN NNS is more likely than DT NN NN PGS
NNS (here, DT=determiner, NN=singular noun, NNS=plural houn
and POS=possessive). However, if you look at the words, the cor-
rect sentenceis at least as plausible as the other hypothesis (as the
trigram model predicted). We can find several instances of thiskind
in the bottom-left category.

By looking at the 23 instancesin the top-right category — where the
parser predicted correctly whilethetrigram model did not — wefind
a number of encouraging examples. Six example are listed in the
Appendix. For example, in the first sentence, racdonnel | .. .,
SRI's best candidate, has no verb, yet the trigram score for the can-
didate is better than for the correct sentence. In the second sentence
t hey say.. ., there are too many verbsin SRI’'s best candidate.
Thisis exactly what we expected to achieve with a parser. In other
words, sometimes wide context is more important for picking the
correct words than local (trigram) context .

Theother categories(16 top-left and 17 bottom-right in the table) are
harmless; adding parsing score to trigram score in these cases does
not affect the ranking of the two sentences. Many such casesare to
be expected because syntactic context often includeslocal evidence.

Outside of this table, we found an interesting example. It concerns
out-of-vocabulary words (in particular, proper nouns) and an exam-
pleis shown in the Appendix under “other” category. It containsan
OO0V sequence of long proper nouns (“noriyuki matsushima”), but
asthesenounsare not in the vocabulary, the speech system produced
an unusual sequence of words (“nora you keep matsui shima”). We
could not calculate atrigram score for the correct hypothesis, but as
you can imagine the parser assigned a much better score to the cor-

rect sentence. So, it may be interesting for future work to use the
techniqueof parsingin order to try to identify these mistakes on out-
of-vocabulary words.

5.2. Evaluation

Although we found some promising evidence in the binary com-
parison experiment, we found no improvement in speech evaluation
when the parsing scores were linearly combined with the other sen-
tence scores. This is understandable, because now we have 19 com-
petitors (we used 20-best) rather than a single competitor in the bi-
nary experiment; there could be some other hypothesiswhichis syn-
tactically more plausible but includes more word errors.

6. Conclusion

We havefound consistentimprovementsin speech recognition accu-
racy based on a topic-coherence model. In particular, the improve-
ments under different test conditions increase our confidencein the
significanceof our overall resullt.

We found some suggestive evidence that the parser may be able to
help, althoughit isnot yet at the point of improving recognition accu-
racy. Asit seemspromising, it isworth pushing thisline of research.
Thiswill include improving the parser and also adapting the parser
to the recognition task. In particular, because the output style of the
speechrecognizer is not the sameasthe written text, we should make
some adjustments to the grammar and dictionary. For example, the
recognizer output does not have commas or quotation marks, which
are significant cluesin written text parsing, so the grammar needsto
be adjusted accordingly.
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Appendix: Binary Comparison Examples

Parser and trigram scores are shown in parentheses. Smaller num-
bers are better.

C. correct sentence S: SRl -best candidate

Parser and Trigram both favor SRI-best

C. sone dealers of foreign cars also | owered
their japanese prices (448, 655)
S: sone dealers of foreign cars also | owered

t he j apanese prices (424,614)

the problemisn't gridlock he says the
wheel s are out of alignnent (598, 646)

S: the problemis in gridlock he says the

wheel s are out of alignnent (567, 625)

Trigram favor Correct, but Parser favor SRI-best (Bad example)

C. board would review distributing the
remai ning shares in the gold subsidiary to
the parent conpany’s sharehol ders (1328, 1306)
S: board would review distributing the
remai ning shares in the gold subsidiary to
t he parent conpany shar ehol ders (1254, 1333)

Trigram favor SRI-best, but Parser favor Correct (Good example)

C. ntdonnell douglas corporation has built
hel i copter parts ... (1360, 1548)
S: ntdonnel |l dougl as corporation and bell
helicopter parts ... (1404, 1491)
C. they are interested in commodities as

a new asset class van says (521, 731)
S: they are interested in commodities says
a new asset class van says (560, 720)

C. weary of worrying about withdrawal

charges if you want to leave ... (1132,1273)
S: weary of worrying about w thdraw all

charges if you want to leave ... (1210, 1202)
C. this scenario as they say ont.v. is

based on a true story (550, 649)
S: this scenario as a say on t.v. is
based on a true story (576, 644)

C indirect foreign owership is limted to 25%
(613, 723)
S: in direct foreign ownership is limted to 25%
(695, 709)

even sone |awers now refer clients to
nedi ators offering to review the nediat ed
agreement and provide advice if needed
(1045, 1255)
S: even sone |awyers now refer clients to
nedi ators offering to review the nedi at ed
agreement can provide advice if needed
(1067, 1253)

Others

C. the may figures show signs of inproving sales
said noriyuki matsushima (951, ?)
S: the may figures show signs of inproving sales

said nora you keep matsui shim (1211, 7?)



